搜索
热门搜索
历史搜索
    清除搜索历史
    菜单
    关于我们 致力于成为全国消费者喜爱的品牌
    公司简介
    深圳市海德精密陶瓷有限公司是一家开发、设计、生产、销售先进精密陶瓷产品的公司。  先进陶瓷与金属相比,具有高硬度、高强度、耐高温(耐火)、耐磨损、耐腐蚀、耐酸碱、抗氧化、绝缘、无磁性、化学稳定性好等优异性能,所以它常常用在金属材料...
    公司简介
    产品展示 打造中国和室行业的国际品牌
    海德的五大优势 精密陶瓷 海德用心做好这件事
    应用行业 广泛应用在航空、军工、核能、机械、医疗等各行各业
    应用行业 广泛应用在航空、军工、核能、机械、医疗等各行业
  • 2018 - 07 - 30

    1、用陶瓷材料做刀具

    在金属材料机械加工中, 切削加工是最基本、最可靠的精密加工手段, 刀具材料的性能对切削加工效率、精度、表面质量、刀具寿命有着决定性的影响。在现代切削加工中, 陶瓷刀具材料以其优异的耐热性、耐磨性和化学稳定性, 在高速切削领域和切削难加工材料方面扮演着越来越重要的角色。陶瓷刀具材料主要包括氧化铝、氮化硅及赛隆系列。其他陶瓷材料, 例如氧化锆、硼化钛陶瓷等作为刀具材料也有使用。

     2、氧化铝系列

    纯的氧化铝陶瓷含 Al 2 O 3 99% 以上, 强度低, 抗热震性及断裂韧性较差, 切削时易崩刃, 故没有广泛使用。碳化物、氮化物和硼化物材料具有很高的强度和硬度, 可以作为 Al 2 O 3 陶瓷中的增强相。这类物质包括TiC、TiN、TiB 2 、Ti( CN) 、WC、ZrC 等。采用重复热压工艺制备Al 2 O 3 - Ti( CN) 刀具材料, 抗弯强度可达 820MPa, 断裂韧性7. 4MPa#m1P2 , 维氏硬度 20. 4GPa。切削试验表明: 此种材料适合连续切削铸铁和硬化钢, 尤其适合间歇切削硬化钢。晶须是一种广泛使用的增强增韧陶瓷材料, 增强Al 2 O 3 使用的主要是 SiC、Si 3 N 4 晶须。SiC 晶须在Al 2 O 3基体中起加强棒的作用, 并使应力在基体内分散。这种陶瓷刀具断裂韧性、强度和硬度都比较高, 非常适合加工镍基耐热合金及较低的切削速度加工各种铸铁和非金属脆性材料。Si 3 N 4 晶须加入到 Al 2 O 3 基体中可以提高陶瓷的抗热冲击性, 适合切削镍铬铁耐热合金材料氧化锆相变增韧是一种广泛使用的增韧工艺。在Al 2 O 3 材料中加入15% 部分稳定的氧化锆, 1 550 e 真空烧结 2 h, 制备出 ZrO 2 - Al 2 O 3 复合材料, 断裂韧性8. 2MPa#m1P2 , 抗弯强度可达 884MPa。这类陶瓷刀具具有较好的韧性和抗热冲击性, 但耐磨性较差, 主要用于铸铁和合金的粗加工。

     

    3、 氮化硅系列

    氮化硅材料是在氧化铝材料以后出现的一种刀具材料。它比氧化铝材料的强度和断裂韧性高, 其抗弯强度一般可达 900~ 1 000MPa, 断裂韧性 5~ 7MPa#m1P2 , 硬度 91~ 93HRA, 耐热性可达1 300~ 1 400 e , 不易产生裂纹, 可以获得稳定的使用寿命。采用热压自增韧的方法可以进一步提高氮化硅陶瓷的强度和韧性, 即控制烧结过程, 使一部分氮化硅晶粒发育成具有较大长径比的棒状晶粒( 晶粒的长径比可达 3~ 8) , 从而获得类似于晶须增韧的效果, 断裂韧性可达 10。 02MPa#m1P2 。这种自增韧陶瓷刀具是一种适合切削冷硬铸铁和淬硬钢的刀具材料, 特别适合于断续切削。在氮化硅基体中添加适量金属碳化物等复合强化剂, 利用复合强化效应制成的氮化硅复合陶瓷, 其性能比热压氮化硅陶瓷优越得多。在 Si 3 N 4 中添加 Al 2 O 3 、Y 2 O 3 、TiC、TiN 和MgO 等成分, 可以采用冷压烧结而降低成本。B- 赛隆就是在 Si 3 N 4 中加入 Al 2 O 3 烧结而成, 兼有 Al 2 O 3 和 Si 3 N 4 的特性, 其热硬性比硬质合金和Al 2 O 3 都高, 刀尖温度高于 1 000 e 时仍可高速切削。其最大特点是可提高切削速度, 加大进给量, 提高

    金属切削率, 延长刀具寿命。纳米材料是近年来研究的热点, 广泛应用到材料科学的各个方面。以Si- C- N 纳米微粉为增强相, 以Si3 N4 为基体, Y2 O3 、La2 O3 为烧结助剂, 采用热压法制备了SiCp - Si3N4  纳米复相陶瓷。其室温、高温力学性能比氮化硅单相陶瓷有较大提高, 断裂韧性分别为11。78Mpam1/2 和14。69Mpam1/2 (1350℃)抗弯强度分别为934 MPa 和 696 MPa( 温度 1 350℃)

     

    4、用陶瓷材料做轴承

    传统的轴承多采用金属制成, 以油作为润滑介质。但在使用中有许多缺点, 如不适用于高温、高速、有化学腐蚀的场合, 油润滑易泄漏污染环境等。采用陶瓷材料制造轴承可以弥补金属轴承的不足。

    Si3 N4 以其优良的性能成为制造陶瓷滚动轴承的首选材料, 已经在高速车床、航空航天发动机、化工机械和设备等许多领域得到了应用。例如, 美国的诺顿公司已将 Si3N4 陶瓷轴承应用在航天飞机的液压泵。药设备以及印染、渔业设备。实践证明, 陶瓷作为一种滚动轴承材料使用是成功的。用于制造滑动轴承( 水润滑) 的陶瓷材料主要有氧化物陶瓷和非氧化物陶瓷两大类。氧化物陶瓷主要包 括氧化铝、氧化锆等; 非氧化物陶瓷则主要包括碳化物和氮化物等。试验表明: 非氧化物陶瓷的抗磨损性能更好, 其中以Sialon 和Si3N4 综合性能最佳。Mo2 FeB2

    是新研制成功的陶瓷滑动轴承材料, 具有良好的耐热性、耐磨性、耐腐蚀性和与钢良好的可焊性, 可广泛用于各类滑动轴承。陶瓷轴承有如下优点:高速: 陶瓷的重量仅为同体积钢重量的 40%, 这样就能减少离心载荷与打滑, 使陶瓷轴承比传统轴承转速提高20% ~ 40%。长寿命: 陶瓷材料的硬度比钢的硬度高得多, 硬度高能减少磨损。此外陶瓷还具有较高的抗压强度, 根据特定材料和试验类型, 大约是钢的 5~ 7 倍。当轴承中有杂质时, 陶瓷轴承很少产生剥落失效, 因此陶瓷轴承通常具有更长的使用寿命。

    低发热: 陶瓷的摩擦系数大约为钢的 30%, 因此陶瓷轴承产生的热量较少, 这样可延长轴承的寿命。

    低热膨胀: 氮化硅的热膨胀大约是钢的 20%, 故有益于在温度变化大的环境中使用。但是其轴和轴承座选择钢材时, 必须采取相应措施以适应其配合度。

    耐腐蚀: 陶瓷材料不活泼的化学特性使陶瓷轴承具有优良的耐腐蚀性。

    绝缘: 陶瓷材料不导电, 可使轴承及轴承座免遭电弧损伤。

    耐高温: 陶瓷轴承允许的工作温度为 1 090 e , 陶瓷材料即使在高温下强度和硬度也不会降低, 所以对用在高温环境中的轴承来说, 该材料是非常有利的。

     

    5、用陶瓷材料制作铸型-陶瓷型

    陶瓷型铸造是以陶瓷作为铸型材料的一种铸造方 法, 铸出的铸件精度和表面质量均优, 可以不经切削或只进行很少的切削加工, 属于一种精密铸造方法。

    制作金属型的基本原理: 以耐火度高、热膨胀系数小的耐火材料作为骨料, 用经过水解的硅酸乙酯作为粘结剂配制成陶瓷浆料, 在催化剂的作用下, 经过注浆、结胶、硬化、脱模、喷烧和焙烧等工序制成表面光洁、尺寸精度高的陶瓷铸型。陶瓷型铸造广泛用于模具的制造, 如锻模、冲模、压铸模、玻璃器皿模等。与机加工模具相比成本降低 20% ~ 40% , 制造周期缩短50% ~ 80%。如上海桑塔纳轿车汽缸盖模具, 采用陶瓷型精铸H13 钢模具, 表面粗糙度Ra 值为 6. 3~ 12. 5

    Lm, 尺寸精度达到0. 35       P100         , 可满足生产要求, 替代进口模具, 制造成本仅为进口模具的 25%。

    6、用陶瓷材料制作喷砂嘴

    陶瓷材料硬度高、耐磨性好, 代替铸铁、钢、硬质合金将其制成喷砂嘴, 与各种干式或湿式喷砂、喷丸机配套使用。以压缩空气或磨液泵为动力, 通过喷枪、喷砂嘴将磨料高速喷射到零件表面, 达到表面处理的目的( 表面强化和表面改性、表面清理、表面喷磨料切割等) 。一种新型的陶瓷喷砂嘴的制备工艺是: B4 C 粉和( W, Ti) C 粉按一定比例混合, 以乙醇作为